1.

a. Define the properties of a one-way hash function. (6 marks)

Answer
A hash function h maps arbitrary length value x to fixed length value y such that:
Hard to reverse. Given value y not feasible to find x with y = h(x).
Collision freeness. Hard to find values x, x' such that h(x) = h(x').

• Unpredictability. The hash value h(x) does not give any information about any part of its operand x.

Q1 A hash Function Maps . I Into a Fixed (ensth
A It should be un Predictable:	
That is given h(x) nothing can be	
Known about K	
It should be irreversible!	
Given h(x) it should not be reasible	
to compute X	
It should be Free From Coulisions:	PI
Given two values X, Y IF X = Y	6
then the probability of h(x) = h(x)	
Should be low	

b. Following an intrusion at Adobe (October 2013), attackers gained access to a user password file. It is believed that each password p was stored in encrypted form in the file as $E_{des}^{ecb}(K_A, p)$ using triple DES (ECB mode) where K_A is a secret Adobe master key. Describe two security weaknesses of this scheme. (6 marks)

Q1	Dupurate Passwords can be seen in
B	the FILE.
	Given two users with two identical
	Passwords P, P' where P=P'
	It can be seen that the two users
	have the same passavord, IF GAR
	user has a password hint and another
	didn't that him could be used to
	Soure the other wours password
_	Triple DES is Teversible and
	an attacker need only compromise
	Master Key KA to retrieve all
	Password S
	ECB was used which allows Patterns
	In the pass words to be seen.
	ONLY applicable FOT Larger Passwords
	No IV was used,
- Ti	
6	

c. Continuing Question 1 (b), describe how the passwords should have been stored and explain how your scheme defends against a pre-computation dictionary attack. (6 marks)

C They should have been stored
using a secure one way hash
Function with a salt value
The Salt value defends against
a Precomputation dictionary citack
as every bit of salt doubles
the size OF Sighbarry the attacker
needs to generate
Example ! 1 bit Sait (not large enoush)
USEF = A, Password = XYZ, Salt = Oranion
chosen
Store
A, O, h(XYZ^O) in File
where h is a secure one way hash
Such as SHA256
Attacker assuming XYZ was in
dictionary would have had to precompute
both h(xy2~0) and h(xy2~1)
As you add salt the amount OF 6
Precomputation grows exponentially

d. The following Java code generates a symmetric cipher based on a random session key.

```
KeyGenerator kg= KeyGenerator.getInstance("DES");
kg.init(new Random(0));
SecretKey key= kg.generateKey();
Cipher cipher= Cipher.getInstance("DES/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE.key);
```

Give a Java code fragment that encrypts the contents of a file using this key. (6 marks)

Answer ???

//creating file output stream to write to file
try(FileOutputStream fos = new FileOutputStream(fname+".des")){
//creating object output stream to write objects to file

//creating object output stream to write objects to file ObjectOutputStream oos = new ObjectOutputStream(fos);

e. Identify and explain any security vulnerabilities in the code in Question 1(d) above.
 (6 marks)

Answer ???

Q1The use OF DES E Des 15 no longer considered à secure encryption algorithm. Its 56 bit Keys are susceptable to a bruteForce attack. A more secure algorithm such as AES should be used The use OF ECB WLOCKS ECB should not be used as It allows Patterns in the Plaintext to appear in the ciphertext it is also vulnerable to Cut and Paste attacks where blocks. From the Encrypted File can be moved around Without breaking the decryption The use of Random Co) does not give us secure random numbers. Its 6 output is predictable The lack of an IV

2. Consider the following Needham-Schroeder style authentication protocol, whereby initiator A asks Authentication Server Y for a session key K_{AB} that it can use with service B.

Principles A and B share long-term secret keys K_{AT} and K_{BT} with server T, respectively; N_A is a nonce and $\{...\}_K$ denotes symmetric key encryption with secret key K.

a) Describe an attack on the protocol whereby Eve can masquerade as A to B. (10 marks)

Assuming Eve shares a key ket A Trent She can do the Following MSFX1 E -> T | E, B, NE MSF & 2 T-DE ENE, B, KEB, EKEBBKBT Eve receiving the Pterious message From bob uses KET to retrieve KEB and EKEBJEBT FOR Later use IF eve wants to masquerade as Alice She can send ; MSG~ 3 ALE] -> B A, EKEB 3KBT Bob will receive the Message see its From alle and extract KEB using his KBT 10 Bob cannot tell kep is actually From Eve as It is just a key BOD WILL NOW use KEB thinking he is communications with Alle EVE could replace A with any other user in MSG23 and Bob will believe he is talking to that user

 b) Revise the protocol so that: it eliminates the vulnerability in Question 2(a): provides mutual authentication between A and B and supports key revocation in the event that K_{AT} is compromised.
 (10 marks)

B. MSG 1 ADT A, B, NA
MSB 2 T-DA ENA, BE KAB, Etab, A, B, Timestano 3 3
MSE 3 A-B A, EKAB, A, B, TIMESTAMP BLASEANABLAB
MS9 4 B-JA EA, NA+13KAB, EB, NB3KAB
MSG 5 A-DB EB NBH13KAB
It provides key Teuocation with the
timestamp. Session Keys will expire M
(Parties wont accept or key that's stale and
Be Forced Tekey after a Predetermined amount
OF time
It Provides Mutual auth using the
nonces A and B are included in the ponce
so that Alkes nonce looks different than
belos nonce

c) Alice logs into the workstation corresponding to Principle A and K_{AT} is determined by her password. Alice does not want to give her password every time she uses the protocol to request services, however, she is concerned about the workstation storing long-term key K_{AT} for the duration of her login session. Describe how the protocol can be revised to provide single-sign-on for Alice while addressing her password security concerns. (5 marks)

Answer			

She can do this by changing the protocol be similar to kerberos to Alice requests a session key From Erent using KAT. For example alle could do MS91 ADT A, NA, VALEITY MS92 T-) A S.NA, KSESSIONAT, VALIBITY 3 KAT Acces workstation uses KAT to retrieve Ksession AT From MS92 Trent will now send messages to A K session AT instead of KAT and trent will discard it after the valdity so It is no longer used When Alice wants to message bob She would send the message as before to trent: ADT AIB, NA Tent would then respond with the essase as normal (as message 2) but use ESESSIONAT INSTEAD OF KAT

3. The following SSL-style protocol fragment establishes a secure connection between browser B and web-server A:

where K_A is the public key owned by A, K_{ab} is a symmetric key proposed by A and N_B is a nonce. In a Protocol Msg 1, {...} K_{ab} denotes symmetric key encryption in Protocol Msg 2.

a) Explain how the protocol should be extended to support public key certificates. Your answer should include a revision of the protocol, description certificate)s) content and how it is used by the browser / web server.
 (10 marks)

Answer				
A	M59 1	B->A	Hello	
	M59 2	A>B	CertA	
	M59 3	B->A	EB, KAB, NB 3KA	
	MSg 4	A-DB	ENB +13KAB	
			d 14 1	Fall7
Where	Certa	Contains	EKA, A, Varbiry 3 SKT	Private
The Br	owser Kr	nows KT	, our CA and has	
LIS Publ	lic key	installed	USINS Ceit A	
It can	valleate	the Publi	c Rey in the cert belons	5
to A.	and has	not expire	d (+ will use this	
KA IN	n Msg	3	[[D
The ver	o Sciller	to Set	Gert A would reed	
to sea	wely ser	t ir ka	and our ca kt	
W0412	need E	o varizal	ke KA is owned by A	1

b) The protocol assumes that B is competent to generate a good session key K_{ab}. Give an example of why this might not be the case. Revise the protocol so it uses a Diffe-Hellman key exchange to establish the session key K_{ab}. (10 marks)

Answe	r
Bi	B could be using a POOR random number generator to generate KAB of even reuse KAB. The Browser b could be Poerly designed of a bus intentionally (accidentally Left in it (see heartbled)

c) Apple iOS comes with a pre-installed trusted Certificate Authority (CA) certificate from a foreign military agency. Describe how this agency might spy on a user's secure (HTTPS) web browsing.
 (5 marks)

C	Using this CA. the agency could
	PETFORM a Man In the middle Attack
	on the users browsing
	The agency would gither poison the
	DNS OF FRICK The user by some
	other Means to VISIT their webscruet
	Instead OF the legitimate one
	The millitary CA Will issue certificates
	to that Fake webserver and the
	Certificate would bind that server to
	(FOT example Amazon, com)
	When the user visits the sire they
Γ	- would be Presented with a certificate
L	Which they would trust and believe they
	are talking to the real Amazon.com
	This certificate would be trusted as the
	Phone trusts (erts signed by that
	agency 5 (A